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1. Introduction 1 

 Environmental change, natural perturbation, and anthropogenic activities have degraded 2 

marine habitats compared to historic levels (Kirby 2004; Lotze et al. 2006; McCauley 2015). 3 

Coastal wetlands, seagrasses, and oyster reefs alone have declined by 65-91% (Jackson 2008). 4 

Marine habitat loss is of concern because of cascading effects on biodiversity (Jones et al. 2004; 5 

Airoldi et al. 2008; Polidoro et al. 2010) and ecosystem service provision (Worm et al. 2006; 6 

Grabowski & Peterson 2007; Rey Benayas et al. 2009). In response, the science and practice of 7 

ecological restoration have expanded because of the potential to stimulate recovery of degraded 8 

or disturbed ecosystems (Aronson & Alexander 2013; Menz et al. 2013) and restoration now 9 

plays a key role in natural resource management and policy decisions (Suding 2011). Synthesis 10 

and evaluation of previous restoration activities can provide key insights as to whether 11 

restoration approaches should be continued or changed, and can be used to support an adaptive 12 

resource management framework (Gregory et al. 2006; Wortley et al. 2013). Similarly, 13 

evaluating restoration policies and management programs can provide important insight 14 

regarding the effectiveness and efficiency of policy goals and management actions.  15 

In the United States, restoration of estuarine habitats became a national priority with the 16 

Estuary Restoration Act (ERA) of 2000 (Title 1 within the Estuaries and Clean Waters Act of 17 

2000). The ERA defines restoration as “an activity that results in improving degraded estuaries 18 

or estuary habitat or creating estuary habitat (including both physical and functional restoration), 19 

with the goal of attaining a self-sustaining system integrated into the surrounding landscape” 20 

(ERA 2000). Goals outlined in the ERA include: promotion of estuarine habitat restoration, use 21 

of common monitoring standards, development of effective partnerships, improved cost-22 

efficiency, and enhancement of monitoring and research capabilities to ensure sound science 23 
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(ERA 2000). Monitoring of ERA-funded projects was mandated, and targeted guidance manuals 24 

were developed to promote the use of standardized metrics and methods (Thayer et al. 2003, 25 

2005). Additionally, the ERA required public dissemination of all project information and 26 

monitoring data. To achieve this requirement, the National Oceanic and Atmospheric 27 

Administration (NOAA), in consultation with the established Estuary Habitat Restoration 28 

Council, was charged with the development and maintenance of the National Estuaries 29 

Restoration Inventory (NERI, https://neri.noaa.gov).  30 

Oyster reefs have experienced global losses in abundance and extent greater than any 31 

other estuarine or coastal habitat and organism (Jackson 2008; Beck et al. 2011; zu Ermgassen et 32 

al. 2012), despite management efforts that have been widespread for centuries (MacKenzie et al. 33 

1997; EOBRT 2007). Only recently have oysters gained greater recognition for the non-food 34 

benefits they provide that support and sustain human welfare, including nutrient regulation 35 

(Piehler & Smyth 2011; Beseres Pollack et al. 2013), shoreline stabilization (Meyer et al. 1997; 36 

Scyphers et al. 2011), and recreational fishing opportunities (Zimmerman et al. 1989; Peterson et 37 

al. 2003). Restoration efforts are increasingly focused on returning these valuable ecosystem 38 

services to society (Coen & Luckenbach 2000; Brumbaugh et al. 2006; Grabowski & Peterson 39 

2007). In 2009, the American Recovery and Reinvestment Act (ARRA) provided a funding 40 

boost to habitat restoration efforts by focusing on large-scale projects to stimulate coastal 41 

economies (zu Ermgassen et al. 2012, Edwards et al. 2013, ARRA 2009). Over $10 million were 42 

awarded for oyster reef restoration.  43 

Despite the thousands of hours and millions of dollars invested in oyster reef restoration 44 

projects (Mann & Powell 2007; zu Ermgassen et al. 2012), their effectiveness is equivocal 45 

(Mann & Powell 2007; Choi 2007; but see Schulte et al. 2009; Powers et al. 2009), and 46 
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comprehensive project assessments are generally sparse (Hackney 2000; Kennedy et al. 2011; La 47 

Peyre et al. 2014). There are unprecedented opportunities for restoring coastal and marine 48 

habitats under the 2012 Resources and Ecosystems Sustainability, Tourist Opportunities, and 49 

Revived Economies of the Gulf Coast States (RESTORE) Act, which allocates 80% of all fines 50 

paid under the Clean Water Act in response to the Deepwater Horizon disaster to the Gulf Coast 51 

Restoration Trust Fund. Billions of dollars will be available over the next 30 years to restore 52 

coastal and marine habitats, with $200 million allocated to oyster reef habitat restoration alone 53 

(Trustee Council 2015). To make the best use of these funds, lessons must be learned from 54 

previous efforts, and must be disseminated broadly in order to increase efficiency and maximize 55 

success of future efforts.  56 

In the present study, oyster reef restoration efforts in the U.S. were examined to 57 

determine restoration progress and to identify challenges and opportunities. A database was 58 

created by compiling information from the NERI. Data were synthesized to assess: 1) spatial 59 

distribution of restoration effort and funding, 2) trends in project size and cost, and 3) 60 

effectiveness of the NERI in disseminating project information and monitoring data with respect 61 

to published guidance and Federal policies.  62 

 63 

2. Methods 64 

 The NERI represents a national summary of restoration efforts implemented under the 65 

auspices of the ERA, and includes projects funded by the National Oceanic and Atmospheric 66 

Administration, Environmental Protection Agency, Army Corps of Engineers, Fish and Wildlife 67 

Service and the Department of Agriculture’s National Resources Conservation Service. For 68 

inclusion in the NERI, projects must have been implemented after the ERA was signed into law 69 
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(7 November 2000) and must not be mitigation or legally mandated restoration. Additionally, all 70 

projects must include monitoring to assess restoration success, and the monitoring plan must 71 

meet ERA monitoring standards (NERI 2012). This database, though not inclusive of all 72 

restoration projects implemented, represents an unbiased subset of projects implemented under 73 

the guidance and goals of federal policies and funding programs.  74 

 Data summary reports were reviewed, and the NERI was queried using the habitat type 75 

filter “oyster reef/shell bottom” within the “submerged” habitat category. Full reports were 76 

examined for each project returned in the search, and all available data were collected (including: 77 

location, year implemented, area restored, project budget and funding sources). Data for project 78 

costs were designated between federal and non-federal funding sources. Project size data (i.e., 79 

acreage restored) were converted to hectares, and each project was assigned to a size class based 80 

on NERI classifications: small (<0.4 ha), medium (0.4–2.0 ha), or large (>2.0 ha). Cost per 81 

hectare was calculated for each project containing data on acreage and funding amount. 82 

Monitoring data were not reported for any of the projects examined. 83 

 Regression analyses were performed to examine trends over time (R version 3.0.1; R 84 

Core Team 2013) for number of projects, area restored, funding awarded, mean hectares per 85 

project, mean cost per project and mean cost per hectare. To examine trends since the ERA, 86 

regression analyses included only those projects implemented during or after 2000. Dollar values 87 

were converted into the same year dollars (2011 USD) according to: 88 

Costy = (Costx)*(CPIy/CPIx),     (Equation 1) 89 

where CPI is the consumer price index and Cost is the project cost. Subscripts x and y denote the 90 

year of project implementation and year for which all values are converted to, respectively. 91 

Average CPI values for each year were obtained from the Bureau of Labor Statistics (BLS 2015). 92 
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Data for number of projects, area restored and funding were log10 transformed, and all rate data 93 

—hectares per project, cost per project and cost per hectare— were square root transformed prior 94 

to analysis to improve statistical performance.  95 

 96 

3. Results 97 

 A total of 192 projects were returned in the NERI search. Despite ERA definitions and 98 

rules for project inclusion in the NERI, five compensatory projects were identified and excluded. 99 

The remaining 187 non-compensatory projects were examined. Although only projects 100 

implemented after the enactment of the ERA are to be included in the NERI, eight projects 101 

occurred between 1995 and 1999, and 19 projects did not include a date. The NERI did not 102 

contain any projects implemented after 2011. Only one project in the compiled dataset did not 103 

provide any funding information. Other than the distinction between federal and non-federal 104 

sources, no other budget metadata were provided in the NERI. The NERI report format provided 105 

a place for “total cost estimate for monitoring,” but this was not reported for any project 106 

examined. Although all project records indicate a monitoring plan was developed, no data or 107 

assessments of restoration success were provided. Within each project summary, a table was 108 

devoted to “Monitoring Parameters and Success Criteria” and a space reserved for a URL for 109 

monitoring data. However, in every project examined, no data were available.  110 

[Figure 1 here] 111 

Oyster reef restoration projects included in the NERI spanned all coastal states of the 112 

contiguous U.S. except Maine (Fig. 1). Number of projects varied among states, with half of all 113 

projects implemented in Florida, Maryland and Virginia (43, 26 and 25 projects, respectively). 114 
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Over 150 ha of oyster habitat have been restored, of which nearly 62% occurred collectively in 115 

Florida, Virginia and North Carolina (42.6, 26.2 and 24.1 ha, respectively). 116 

Nearly 20% of all projects did not include data on acreage restored, or reported zero 117 

acres. Closer examination of these projects revealed that some did not include on-the-ground 118 

restoration but rather complementary efforts such as shell recycling programs or education and 119 

outreach. Other projects did include on-the-ground efforts, but no acreage was reported. The 120 

remainder of projects ranged in size from 0.004–19.8 ha, with a mean project size of 0.99 ha 121 

(median = 0.24). The small (<0.4 ha) size class contained the most projects (43%), yet accounted 122 

for only 5% of total area restored (Table 1). The majority (64%) of total area restored has been 123 

accomplished through large (>2.0 ha) projects, which represent less than 10% of all projects 124 

(Table 1). 125 

[Table 1 here] 126 

 A total of $45.3 million was awarded for the implementation of the projects examined in 127 

the present study, with an annual average over $3.3 million (Fig. 2). Between 2000 and 2011, the 128 

number of projects implemented per year ranged from 3 to 20 (Fig. 2). Florida, Virginia and 129 

North Carolina received approximately 53% of the total $45.3 million awarded. Overall, nearly 130 

two-thirds of total funding originated from federal sources, and one-third from non-federal 131 

dollars. Non-federal funding sources contributed over 60% of total funding during 2003, 2004, 132 

2007, and 2008; Federal funds represented over 90% of total funding during 2009 and 2010 (Fig. 133 

2). Alabama and Louisiana relied most heavily on federal funding, with non-federal 134 

contributions of only 5.9% and 7.3% of total funds received in each respective state. Washington 135 

and Texas received the most non-federal support, which contributed 67.8% and 66.3% of total 136 

funding received by each state, respectively.  137 
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Projects ranged in total cost from $500-$5,000,000, with a mean project cost of $243,731 138 

across all size classes, including those reporting zero acreage (median = $105,250). For all 139 

projects with acreage and cost reported, mean cost per hectare decreased exponentially with 140 

increased project size (Table 1), from $3,477,339 ha-1 for small projects (median = $1,235,527) 141 

to $97,989 ha-1 for large projects (median = $41,043). In general, large projects were supported 142 

primarily by federal funds, providing over 87% of total project funding. Small projects relied on 143 

non-federal funding to support 48% of project costs.  144 

[Figure 2 here] 145 

The largest influx of funding was observed during 2009 (Fig. 2), and was driven by the 146 

ARRA. Our dataset contained seven ARRA projects implemented in 2009 and 2010. This influx 147 

of funding, with the intent to enable rapid implementation of large, “shovel-ready” projects, 148 

resulted in a similar increase in habitat area restored during 2009 (Fig. 2). Of the more than 150 149 

ha of oyster reef habitat restored through projects in our dataset, nearly 32% occurred during 150 

2009 alone. 151 

 Linear regression analyses indicated weak to moderate trends for project size and cost per 152 

hectare (Fig. 3). Average project size increased over time (r2 = 0.32, p = 0.055), from 0.36 ha in 153 

2000 to 1.07 ha in 2011 (Fig. 3a). Average cost per hectare decreased over time (r2 = 0.60, p = 154 

0.003), from $2,169,042 ha-1 in 2000 to $517,950 ha-1 in 2011 (Fig. 3a). No significant trends 155 

over time were identified for number of projects, total area restored, total funding awarded or 156 

mean project cost. ARRA projects were removed from the dataset and additional regression 157 

analyses were conducted to examine whether this large influx of funding and effort 158 

disproportionally influenced the results. Trends were stronger for both project size (R2 = 0.44, p 159 

= 0.019) and cost per ha (R2 = 0.62, p = 0.002) when these projects were excluded (Fig. 3b). 160 
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[Figure 3 here] 161 

 162 

4. Discussion 163 

Ecological restoration has become a global priority, with considerable implications for 164 

science, society and policy (Cairns & Heckman 1996; Suding 2011; Aronson & Alexander 165 

2013). Restoration of estuarine and coastal habitats became a national priority in the United 166 

States with the ERA of 2000.  Political investment in habitat restoration continued with the 167 

enactment of the ARRA in 2009, and more recently the RESTORE Act of 2012. The restoration 168 

of oyster reef habitats is of particular concern due to the extent and magnitude of documented 169 

losses, the numerous ecosystem services oyster reefs provide, and their importance in supporting 170 

valuable fisheries (MacKenzie et al. 1997; Beck et al. 2011; Grabowski et al. 2012).  171 

Restoration efforts to date have generally been ad hoc and site- or project-specific. 172 

Individual oyster reef restoration projects are frequently small scale (<0.4 ha), implemented by 173 

relatively small groups, and have occurred within short-term grant funding periods of 1-2 years 174 

(EOBRT 2007). Although these characteristics often make small projects desirable to funders by 175 

allowing broad distribution of available resources, it is unlikely that large functioning 176 

ecosystems will ever be achieved through the cumulative effects of small-scale projects 177 

(Manning et al. 2006; EOBRT 2007; Choi 2007; Mann & Powell 2007). Increased economies of 178 

scale and ecological benefits can be realized through the integration of small with large 179 

restoration projects wherever possible (Hobbs & Norton 1996; Schulte et al. 2009; 100-1000: 180 

Restore Coastal Alabama 2015; Soulé & Terborgh 1999).  181 

Examination of restoration projects for other habitats within the NERI indicates that 182 

oyster reef projects may be particularly small. Within the submerged habitat category, 44% of 183 
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projects comprise oyster reef (one of nine habitat types), yet these only account for 2% of area 184 

restored (NERI 2012). The total area of oyster reef restored by projects in this analysis represents 185 

only 0.17% of an estimated 86,000 ha lost from 28 bays across the U.S.A. (zu Ermgassen et al. 186 

2012). The small scales at which most projects are implemented may not effectively sustain, 187 

enhance or restore ecosystem services, and the relatively large costs per unit size can be 188 

inefficient or even wasteful (Aronson et al. 2006; Rey Benayas et al. 2009). 189 

One of the most promising findings in the present study is that ERA-funded oyster reef 190 

restoration projects have increased in size and decreased in per unit costs over the past decade. It 191 

is increasingly recognized that the small scales at which most projects are implemented may not 192 

effectively sustain, enhance or restore functioning ecosystems or desired ecosystem services 193 

(Choi 2007; Mann & Powell 2007; Rey Benayas et al. 2009). In the present analysis, mean 194 

project size increased over time, yet the majority of projects were relatively small (<0.4 ha). 195 

Opportunities to implement larger projects may be available with RESTORE Act funding. For 196 

example, the American Recovery and Reinvestment Act (ARRA) of 2009 included goals to fund 197 

large-scale projects. The dataset compiled in this analysis contained seven projects implemented 198 

in 2009 and 2010 under the ARRA, with six of them directly engaging in reef construction 199 

activities. During 2009, when the largest ARRA projects were implemented, mean project size 200 

increased from 1.4 to 4.0 hectares. In general, projects implemented under the ARRA enabled 201 

proof-of-concept techniques to be scaled up to effect ecosystem-level changes (Pendleton 2010; 202 

Schrack et al. 2012), better facilitating future large-scale restoration efforts.  203 

While there has been a push toward the implementation of larger projects, it is also 204 

important to understand relative success between small and large projects, the degree to which 205 

ecosystem service provision scales with habitat acreage restored, and how to effectively evaluate 206 
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the cumulative effects of small projects (Hobbs & Norton 1996; Thayer et al. 2005; Brumbaugh 207 

et al. 2006). Further, the move to a larger-scale framework for restoration does not mean that 208 

small-scale restoration should be dismissed but that smaller efforts should fit into a larger, 209 

coordinated guiding structure so that the contribution and effectiveness of small projects can be 210 

maximized (Soulé & Terborgh 1999). In fact, community-based restoration projects, though 211 

typically small in scale, provide valuable experiences that have large social impacts (Cairns & 212 

Heckman 1996; Leigh 2005). Oyster harvesting formed the foundation of countless coastal 213 

communities across history and reflects generations of lifestyle and tradition (MacKenzie et al. 214 

1997; Brumbaugh et al. 2006). Community involvement in restoration projects connects 215 

contemporary societies to these cultural keystone species, educates the public, and fosters 216 

environmental stewardship (Leigh 2005; Miller & Hobbs 2007). As restoration efforts increase, 217 

so does societal demand for the restoration of valuable ecosystem services. Inclusion of smaller 218 

community-based efforts in larger plans for system restoration could maximize the long-term 219 

contribution and effectiveness of such efforts while maintaining the unique social benefits these 220 

projects provide. 221 

Larger projects are frequently more cost efficient because of declining average fixed 222 

costs that include construction costs such as mobilization, demobilization, and loading facility 223 

set-up (Chitkara 1998). There are significant fixed costs associated with most restoration 224 

projects, and as a result, the cost-per-unit-area for relatively small projects can be exceptionally 225 

high while the cost-per-unit-area for large scale projects can be relatively low (King & Bohlen 226 

1994; Spurgeon & Lindahl 2000). Further research to identify advancements in restoration 227 

techniques and economies of scale for restoration activities are needed to maximize efficiency 228 
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and impact of investment (Cairns & Heckman 1996; Spurgeon & Lindahl 2000; Manning et al. 229 

2006; Menz et al. 2013).  230 

 Making informed funding decisions about habitat restoration projects calls for reliable 231 

restoration cost data (King & Bohlen 1994; BenDor et al. 2015). However, restoration cost data 232 

are frequently vague or unavailable (Spurgeon & Lindahl 2000; Bernhardt et al. 2005; BenDor et 233 

al. 2015). In the present analysis, only total project cost was identified, delegated between federal 234 

and non-federal funding sources. No other details were provided to identify various cost 235 

components by task (e.g. pre-construction, construction, post-construction) or input category 236 

(e.g. labor, materials, equipment). It is important for new practitioners and scientists entering the 237 

field of restoration ecology to be able to determine reliable estimates of the costs of designing, 238 

implementing, and monitoring restoration projects to ensure project completion and monitoring 239 

success. It is equally important for policy makers and managers to understand how funds are 240 

being allocated to improve efficiency and effectiveness of funding processes.  241 

Despite the creation of guidance documents for monitoring (Thayer et al. 2003; 2005), 242 

and ERA mandates to make monitoring data publicly available through the NERI, no monitoring 243 

data were available for any of the 187 projects examined in this analysis. This lack of data is not 244 

likely an accurate portrayal of monitoring activities, but rather, a reflection of obstacles in data 245 

dissemination, whether by lack of data provision or database maintenance. Regional databases of 246 

habitat restoration projects compiled through direct contact with individual scientists, 247 

practitioners and agencies have similarly reported a lack of project data. Kennedy et al. (2011) 248 

and La Peyre et al. (2014) described how only approximately one-half and one-quarter of oyster 249 

reef restoration projects in the Chesapeake Bay and northern Gulf of Mexico, respectively, were 250 

monitored or reported, hindering evaluation of project effectiveness. This lack of data is not 251 
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specific to oyster reef restoration projects. For example, low monitoring and reporting rates were 252 

found for salt marsh restoration in northwestern Europe (Wolters et al. 2005) and river 253 

restoration in the U.S. (Bernhardt et al. 2005).  254 

As restoration efforts increase, this inability to assess project outcomes is particularly 255 

troublesome (Suding 2011; La Peyre et al. 2014). Ongoing efforts seek to improve monitoring 256 

data collection and dissemination. For example, recent collaborative efforts have aimed to 257 

address challenges of monitoring, including issues of data compatibility, integration and 258 

management (Baggett et al. 2014; Waddell & Olson 2015, NAS 2016). And, while there are 259 

many scientific publications that describe comprehensive monitoring efforts and results (e.g. 260 

Lenihan & Peterson 1998; Grabowski et al. 2005; Geraldi et al. 2013), it is difficult to determine 261 

the proportion of total restoration efforts these studies represent (Hackney 2000).  262 

Without effective dissemination of project data and lessons learned, limited resources may be 263 

wasted on duplicate efforts. As policies related to ecological restoration expand, it is important to 264 

make sure that policies and programs are written with clear, achievable goals and adequate funds 265 

are allocated to administrative oversight. Unprecedented opportunities for comprehensive habitat 266 

restoration and scientific advancement will be available in the U.S. through the RESTORE Act. 267 

Nearly $6.5 billion will be dedicated solely to ecosystem restoration efforts, with an additional 268 

$1.5 billion assigned for monitoring, adaptive management and administrative oversight (Trustee 269 

Council 2015). Restoration and research conducted under the auspices of the RESTORE Act 270 

have great potential to advance restoration science throughout the U.S.A. and globally. While the 271 

biggest impacts of these efforts will most directly affect the Gulf of Mexico, the knowledge 272 

gained can easily transfer to other areas. It is important for the restoration community as a whole 273 
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to be invested in how these projects are being implemented, how the data are being managed, 274 

and how that information will ultimately be used.  275 

 276 

5. Conclusion 277 

Large investments are being made for marine habitat restoration, and there is a need for 278 

improved strategies to ensure effective project implementation, comprehensive monitoring, and 279 

data dissemination so that restoration projects make meaningful contributions to science, policy 280 

and society (Bjorndal et al. 2011; Aronson & Alexander 2013; McNutt 2015). Environmental 281 

restoration projects have faced increased scrutiny, making transparency about restoration goals 282 

and outcomes essential for maintaining and building support for continued restoration efforts. 283 

Additionally, restoration ecology is a growing field. It is critical that new and current 284 

researchers, practitioners, and decision-makers are able to learn from past projects and apply that 285 

collective knowledge to future restoration efforts. Finally, effective communication between 286 

researchers, practitioners, and decision-makers is necessary to ensure that the restoration science 287 

and policy evolve together. 288 

 289 
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Table 1.  Summary of oyster restoration projects by size class. 1 

 2 

Size class 
Number 

of projects 

Total area restored 

(ha) 

Mean cost per 

ha (USD) 

Small              

(< 0.4 ha) 
80 7.5 $3,477,339 

Medium         

(0.4 - 2.0 ha) 
55 46.7 $337,399 

Large         

(> 2.0 ha) 
17 96.4 $97,989 
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